Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work presents an integrated approach to industrial decarbonization by converting mixed polyolefin waste into structured carbon with exceptional Joule heating properties, enabling efficient electrified hydrogen productionviaNH3decomposition.more » « lessFree, publicly-accessible full text available June 3, 2026
-
Abstract We present the in-lab and on-sky performance for the upgraded 90 GHz focal plane of the Cosmology Large Angular Scale Surveyor, which had four of its seven detector wafers updated during the austral winter of 2022. The update aimed to improve the transition-edge-sensor (TES) stability and bias range and to realize the high optical efficiency of the sensor design. Modifications included revised circuit terminations, electrical contact between the TES superconductor and the normal metal providing the bulk of the bolometer heat capacity, and additional filtering on the TES bias lines. The upgrade was successful: 94% of detectors are stable down to 15% of the normal resistance, providing a wide overlapping range of bias voltages for all TESs on a wafer. The median telescope efficiency improved from to (68% quantiles). For the four upgraded wafers alone, median telescope efficiency increased to . Given our efficiency estimate for the receiver optics, this telescope efficiency implies a detector efficiency exceeding 0.90. The overall noise-equivalent temperature of the 90 GHz focal plane improved from to .more » « lessFree, publicly-accessible full text available June 1, 2026
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)Front-end polarization modulation enables improved polarization measurement stability by modulating the targeted signal above the low-frequency $1/f$ drifts associated with atmospheric and instrumental instabilities and diminishes the impact of instrumental polarization. In this work, we present the design and characterization of a new 60-cm diameter Reflective Half-Wave Plate (RHWP) polarization modulator for the 90 GHz band telescope of the Cosmology Large Angular Scale Surveyor (CLASS) project. The RHWP consists of an array of parallel wires (diameter 50~µm, 175~µm pitch) positioned 0.88~mm from an aluminum mirror. In lab tests, it was confirmed that the wire resonance frequency ($$f_\mathrm{res}$$) profile is consistent with the target, $139$~Hz$$<154$$~Hz in the optically active region (diameter smaller than 150~mm), preventing the wire vibration during operation and reducing the RHWP deformation under the wire tension. The mirror tilt relative to the rotating axis was controlled to be $<15''$, corresponding to an increase in beam width due to beam smearing of < $0.6''$, %a beam smearing amplitude of $<0.6''$, negligible compared to the beam's full-width half-maximum of $36'$. The median and 16/84th percentile of the wire--mirror separation residual was $$0.048^{+0.013}_{-0.014}$$~mm in the optically active region, achieving a modulation efficiency $$\epsilon=96.2_{+0.5}^{-0.4}\%$$ with an estimated bandpass of 34~GHz. The angular velocity of the RHWP was maintained to an accuracy of within 0.005\% at the nominal rotation frequency (2.5~Hz). The RHWP has been successfully integrated into the CLASS 90 GHz telescope and started taking data in June 2024, replacing the previous modulator that has been in operation since June 2018.more » « less
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array observing the Cosmic Microwave Background (CMB) at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the CMB polarization on the largest angular scales to constrain the inflationary tensor-to-scalar ratio and the optical depth due to reionization. To achieve the long time-scale stability necessary for this measurement from the ground, CLASS utilizes a front-end, variable-delay polarization modulator on each telescope. Here we report on the improvements in stability afforded by front-end modulation using data across all four CLASS frequencies. Across one month of modulated linear polarization data in 2021, CLASS achieved median knee frequencies of 9.1, 29.1, 20.4, and 36.4 mHz for the 40, 90, 150, and 220 GHz observing bands. The knee frequencies are approximately an order of magnitude lower than achieved via CLASS pair-differencing orthogonal detector pairs without modulation.more » « less
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)Polarization modulation is a powerful technique to increase the stability of measurements by enabling the distinction of a polarized signal from dominant slow system drifts and unpolarized foregrounds. Furthermore, when placed as close to the sky as possible, modulation can reduce systematic errors from instrument polarization. In this work, we introduce the design and preliminary drive system laboratory performance of a new 60 cm diameter reflective half-wave plate (RHWP) polarization modulator. The wave plate consists of a wire array situated in front of a flat mirror. Using 50 μm diameter wires with 175 μm spacing, the wave plate will be suitable for operation in the millimeter wavelength range with flatness of the wires and parallelism to the mirror held to a small fraction of a wavelength. The presented design targets the 77-108 GHz range. Modulation is performed by a rotation of the wave plate with a custom rotary drive utilizing an actively controlled servo motor.more » « less
-
Abstract All‐solid‐state batteries have the potential for enhanced safety and capacity over conventional lithium ion batteries, and are anticipated to dominate the energy storage industry. As such, strategies to enable recycling of the individual components are crucial to minimize waste and prevent health and environmental harm. Here, we use cold sintering to reprocess solid‐state composite electrolytes, specifically Mg and Sr doped Li7La3Zr2O12with polypropylene carbonate (PPC) and lithium perchlorate (LLZO−PPC−LiClO4). The low sintering temperature allows co‐sintering of ceramics, polymers and lithium salts, leading to re‐densification of the composite structures with reprocessing. Reprocessed LLZO−PPC−LiClO4exhibits densified microstructures with ionic conductivities exceeding 10−4 S/cm at room temperature after 5 recycling cycles. All‐solid‐state lithium batteries fabricated with reprocessed electrolytes exhibit a high discharge capacity of 168 mA h g−1at 0.1 C, and retention of performance at 0.2 C for over 100 cycles. Life cycle assessment (LCA) suggests that recycled electrolytes outperforms the pristine electrolyte process in all environmental impact categories, highlighting cold sintering as a promising technology for recycling electrolytes.more » « less
An official website of the United States government
